Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 263
1.
Nat Med ; 2024 May 01.
Article En | MEDLINE | ID: mdl-38693247

Cerebral palsy (CP) is the most common motor disability in children. To ascertain the role of major genetic variants in the etiology of CP, we conducted exome sequencing on a large-scale cohort with clinical manifestations of CP. The study cohort comprised 505 girls and 1,073 boys. Utilizing the current gold standard in genetic diagnostics, 387 of these 1,578 children (24.5%) received genetic diagnoses. We identified 412 pathogenic and likely pathogenic (P/LP) variants across 219 genes associated with neurodevelopmental disorders, and 59 P/LP copy number variants. The genetic diagnostic rate of children with CP labeled at birth with perinatal asphyxia was higher than the rate in children without asphyxia (P = 0.0033). Also, 33 children with CP manifestations (8.5%, 33 of 387) had findings that were clinically actionable. These results highlight the need for early genetic testing in children with CP, especially those with risk factors like perinatal asphyxia, to enable evidence-based medical decision-making.

2.
Open Biol ; 14(4): 230383, 2024 Apr.
Article En | MEDLINE | ID: mdl-38629124

Non-clustered protocadherins (ncPcdhs) are adhesive molecules with spatio-temporally regulated overlapping expression in the developing nervous system. Although their unique role in neurogenesis has been widely studied, their combinatorial role in brain physiology and pathology is poorly understood. Using probabilistic cell typing by in situ sequencing, we demonstrate combinatorial inter- and intra-familial expression of ncPcdhs in the developing mouse cortex and hippocampus, at single-cell resolution. We discovered the combinatorial expression of Protocadherin-19 (Pcdh19), a protein involved in PCDH19-clustering epilepsy, with Pcdh1, Pcdh9 or Cadherin 13 (Cdh13) in excitatory neurons. Using aggregation assays, we demonstrate a code-specific adhesion function of PCDH19; mosaic PCDH19 absence in PCDH19+9 and PCDH19 + CDH13, but not in PCDH19+1 codes, alters cell-cell interaction. Interestingly, we found that PCDH19 as a dominant protein in two heterophilic adhesion codes could promote trans-interaction between them. In addition, we discovered increased CDH13-mediated cell adhesion in the presence of PCDH19, suggesting a potential role of PCDH19 as an adhesion mediator of CDH13. Finally, we demonstrated novel cis-interactions between PCDH19 and PCDH1, PCDH9 and CDH13. These observations suggest that there is a unique combinatorial code with a cell- and region-specific characteristic where a single molecule defines the heterophilic cell-cell adhesion properties of each code.


Brain , Cell Adhesion , Protocadherins , Animals , Mice , Brain/cytology , Brain/growth & development , Epilepsy/metabolism , Neurons/metabolism
4.
Mol Psychiatry ; 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38454084

Clustering Epilepsy (CE) is a neurological disorder caused by pathogenic variants of the Protocadherin 19 (PCDH19) gene. PCDH19 encodes a protein involved in cell adhesion and Estrogen Receptor α mediated-gene regulation. To gain further insights into the molecular role of PCDH19 in the brain, we investigated the PCDH19 interactome in the developing mouse hippocampus and cortex. Combined with a meta-analysis of all reported PCDH19 interacting proteins, our results show that PCDH19 interacts with proteins involved in actin, microtubule, and gene regulation. We report CAPZA1, αN-catenin and, importantly, ß-catenin as novel PCDH19 interacting proteins. Furthermore, we show that PCDH19 is a regulator of ß-catenin transcriptional activity, and that this pathway is disrupted in CE individuals. Overall, our results support the involvement of PCDH19 in the cytoskeletal network and point to signalling pathways where PCDH19 plays critical roles.

5.
Hum Genet ; 143(3): 455-469, 2024 Mar.
Article En | MEDLINE | ID: mdl-38526744

Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokinesis 4 (DOCK4) through the activation of RAC1. Here, we clinically describe 7 individuals (6 males and one female) with variants in DOCK4 and overlapping phenotype of mild to severe global developmental delay. Additional symptoms include coordination or gait abnormalities, microcephaly, nonspecific brain malformations, hypotonia and seizures. Four individuals carry missense variants (three of them detected de novo) and three individuals carry null variants (two of them maternally inherited). Molecular modeling of the heterozygous missense variants suggests that the majority of them affect the globular structure of DOCK4. In vitro functional expression studies in transfected Neuro-2A cells showed that all missense variants impaired neurite outgrowth. Furthermore, Dock4 knockout Neuro-2A cells also exhibited defects in promoting neurite outgrowth. Our results, including clinical, molecular and functional data, suggest that loss-of-function variants in DOCK4 probable cause a variable spectrum of a novel neurodevelopmental disorder with microcephaly.


GTPase-Activating Proteins , Heterozygote , Microcephaly , Mutation, Missense , Neurodevelopmental Disorders , Humans , Microcephaly/genetics , Female , Male , Child, Preschool , GTPase-Activating Proteins/genetics , Child , Neurodevelopmental Disorders/genetics , Loss of Function Mutation , Animals , Developmental Disabilities/genetics , Mice , Infant , Phenotype , Adolescent
6.
Nature ; 627(8004): 594-603, 2024 Mar.
Article En | MEDLINE | ID: mdl-38383780

Although KDM5C is one of the most frequently mutated genes in X-linked intellectual disability1, the exact mechanisms that lead to cognitive impairment remain unknown. Here we use human patient-derived induced pluripotent stem cells and Kdm5c knockout mice to conduct cellular, transcriptomic, chromatin and behavioural studies. KDM5C is identified as a safeguard to ensure that neurodevelopment occurs at an appropriate timescale, the disruption of which leads to intellectual disability. Specifically, there is a developmental window during which KDM5C directly controls WNT output to regulate the timely transition of primary to intermediate progenitor cells and consequently neurogenesis. Treatment with WNT signalling modulators at specific times reveal that only a transient alteration of the canonical WNT signalling pathway is sufficient to rescue the transcriptomic and chromatin landscapes in patient-derived cells and to induce these changes in wild-type cells. Notably, WNT inhibition during this developmental period also rescues behavioural changes of Kdm5c knockout mice. Conversely, a single injection of WNT3A into the brains of wild-type embryonic mice cause anxiety and memory alterations. Our work identifies KDM5C as a crucial sentinel for neurodevelopment and sheds new light on KDM5C mutation-associated intellectual disability. The results also increase our general understanding of memory and anxiety formation, with the identification of WNT functioning in a transient nature to affect long-lasting cognitive function.


Cognition , Embryo, Mammalian , Embryonic Development , Histone Demethylases , Wnt Signaling Pathway , Animals , Humans , Mice , Anxiety , Chromatin/drug effects , Chromatin/genetics , Chromatin/metabolism , Embryo, Mammalian/metabolism , Gene Expression Profiling , Histone Demethylases/genetics , Histone Demethylases/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Intellectual Disability/genetics , Memory , Mice, Knockout , Mutation , Neurogenesis/genetics , Wnt Signaling Pathway/drug effects
7.
Nat Commun ; 15(1): 1210, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38331934

We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2Δ/Y) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions. The Thoc2Δ/Y mouse brain development is significantly impacted by compromised THOC2/TREX function resulting in R-loop accumulation, DNA damage and consequent cell death. Overall, we suggest that perturbed R-loop homeostasis, in stem cells and/or differentiated cells in mice and the patient, and DNA damage-associated functional alterations are at the root of THOC2 syndrome.


Intellectual Disability , Transcription Factors , Humans , Male , Mice , Animals , Transcription Factors/metabolism , R-Loop Structures , Active Transport, Cell Nucleus , Intellectual Disability/genetics , DNA Damage , Phenotype , RNA, Messenger/metabolism
8.
Transl Psychiatry ; 14(1): 65, 2024 Jan 27.
Article En | MEDLINE | ID: mdl-38280856

Clustering Epilepsy (CE) is an epileptic disorder with neurological comorbidities caused by heterozygous variants of the X chromosome gene Protocadherin 19 (PCDH19). Recent studies have implicated dysregulation of the Nuclear Hormone Receptor (NHR) pathway in CE pathogenesis. To obtain a comprehensive overview of the impact and mechanisms of loss of PCDH19 function in CE pathogenesis, we have performed epigenomic, transcriptomic and proteomic analysis of CE relevant models. Our studies identified differential regulation and expression of Androgen Receptor (AR) and its targets in CE patient skin fibroblasts. Furthermore, our cell culture assays revealed the repression of PCDH19 expression mediated through ERα and the co-regulator FOXA1. We also identified a protein-protein interaction between PCDH19 and AR, expanding upon the intrinsic link between PCDH19 and the NHR pathway. Together, these results point to a novel mechanism of NHR signaling in the pathogenesis of CE that can be explored for potential therapeutic options.


Cadherins , Epilepsy , Humans , Cadherins/genetics , Protocadherins , Multiomics , Proteomics , Epilepsy/genetics , Cluster Analysis
9.
Brain ; 146(12): 5086-5097, 2023 12 01.
Article En | MEDLINE | ID: mdl-37977818

Stuttering is a common speech disorder that interrupts speech fluency and tends to cluster in families. Typically, stuttering is characterized by speech sounds, words or syllables which may be repeated or prolonged and speech that may be further interrupted by hesitations or 'blocks'. Rare variants in a small number of genes encoding lysosomal pathway proteins have been linked to stuttering. We studied a large four-generation family in which persistent stuttering was inherited in an autosomal dominant manner with disruption of the cortico-basal-ganglia-thalamo-cortical network found on imaging. Exome sequencing of three affected family members revealed the PPID c.808C>T (p.Pro270Ser) variant that segregated with stuttering in the family. We generated a Ppid p.Pro270Ser knock-in mouse model and performed ex vivo imaging to assess for brain changes. Diffusion-weighted MRI in the mouse revealed significant microstructural changes in the left corticospinal tract, as previously implicated in stuttering. Quantitative susceptibility mapping also detected changes in cortico-striatal-thalamo-cortical loop tissue composition, consistent with findings in affected family members. This is the first report to implicate a chaperone protein in the pathogenesis of stuttering. The humanized Ppid murine model recapitulates network findings observed in affected family members.


Stuttering , Humans , Animals , Mice , Stuttering/genetics , Stuttering/pathology , Peptidyl-Prolyl Isomerase F , Speech , Brain/diagnostic imaging , Brain/pathology , Brain Mapping
10.
Genes (Basel) ; 14(8)2023 07 31.
Article En | MEDLINE | ID: mdl-37628618

Aicardi Syndrome (AIC) is a rare neurodevelopmental disorder recognized by the classical triad of agenesis of the corpus callosum, chorioretinal lacunae and infantile epileptic spasms syndrome. The diagnostic criteria of AIC were revised in 2005 to include additional phenotypes that are frequently observed in this patient group. AIC has been traditionally considered as X-linked and male lethal because it almost exclusively affects females. Despite numerous genetic and genomic investigations on AIC, a unifying X-linked cause has not been identified. Here, we performed exome and genome sequencing of 10 females with AIC or suspected AIC based on current criteria. We identified a unique de novo variant, each in different genes: KMT2B, SLF1, SMARCB1, SZT2 and WNT8B, in five of these females. Notably, genomic analyses of coding and non-coding single nucleotide variants, short tandem repeats and structural variation highlighted a distinct lack of X-linked candidate genes. We assessed the likely pathogenicity of our candidate autosomal variants using the TOPflash assay for WNT8B and morpholino knockdown in zebrafish (Danio rerio) embryos for other candidates. We show expression of Wnt8b and Slf1 are restricted to clinically relevant cortical tissues during mouse development. Our findings suggest that AIC is genetically heterogeneous with implicated genes converging on molecular pathways central to cortical development.


Aicardi Syndrome , Male , Female , Animals , Mice , Aicardi Syndrome/genetics , Zebrafish/genetics , Chromosome Mapping , Genes, X-Linked/genetics , Biological Assay
11.
Hum Mol Genet ; 32(21): 3063-3077, 2023 10 17.
Article En | MEDLINE | ID: mdl-37552066

Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with nine different heterozygous de novo variants in RAB5C. All but one patient with missense variants (n = 9) exhibited macrocephaly, combined with mild-to-moderate developmental delay. Patients with loss of function variants (n = 2) had an apparently more severe clinical phenotype with refractory epilepsy and intellectual disability but a normal head circumference. Four missense variants were investigated experimentally. In vitro biochemical studies revealed that all four variants were damaging, resulting in increased nucleotide exchange rate, attenuated responsivity to guanine exchange factors and heterogeneous effects on interactions with effector proteins. Studies in C. elegans confirmed that all four variants were damaging in vivo and showed defects in endocytic pathway function. The variant heterozygotes displayed phenotypes that were not observed in null heterozygotes, with two shown to be through a dominant negative mechanism. Expression of the human RAB5C variants in zebrafish embryos resulted in defective development, further underscoring the damaging effects of the RAB5C variants. Our combined bioinformatic, in vitro and in vivo experimental studies and clinical data support the association of RAB5C missense variants with a neurodevelopmental disorder characterized by macrocephaly and mild-to-moderate developmental delay through disruption of the endocytic pathway.


Intellectual Disability , Megalencephaly , Neurodevelopmental Disorders , Animals , Humans , Child , Zebrafish/genetics , Zebrafish/metabolism , Caenorhabditis elegans/metabolism , Neurodevelopmental Disorders/genetics , Intellectual Disability/genetics , Phenotype , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Megalencephaly/genetics , Developmental Disabilities/genetics , Mutation, Missense/genetics , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism
12.
Nat Rev Neurol ; 19(9): 542-555, 2023 09.
Article En | MEDLINE | ID: mdl-37537278

Cerebral palsy is a clinical descriptor covering a diverse group of permanent, non-degenerative disorders of motor function. Around one-third of cases have now been shown to have an underlying genetic aetiology, with the genetic landscape overlapping with those of neurodevelopmental disorders including intellectual disability, epilepsy, speech and language disorders and autism. Here we review the current state of genomic testing in cerebral palsy, highlighting the benefits for personalized medicine and the imperative to consider aetiology during clinical diagnosis. With earlier clinical diagnosis now possible, we emphasize the opportunity for comprehensive and early genomic testing as a crucial component of the routine diagnostic work-up in people with cerebral palsy.


Cerebral Palsy , Intellectual Disability , Neurodevelopmental Disorders , Humans , Cerebral Palsy/diagnosis , Cerebral Palsy/genetics , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/genetics , Causality , Paralysis/complications
13.
Epilepsia ; 64 Suppl 1: S14-S21, 2023 Jun.
Article En | MEDLINE | ID: mdl-37021642

Familial adult myoclonus epilepsy (FAME) is a genetic epilepsy syndrome that for many years has resisted understanding of its underlying molecular cause. This review covers the history of FAME genetic studies worldwide, starting with linkage and culminating in the discovery of noncoding TTTTA and inserted TTTCA pentanucleotide repeat expansions within six different genes to date (SAMD12, STARD7, MARCHF6, YEATS2, TNRC6A, and RAPGEF2). FAME occurs worldwide; however, repeat expansions in particular genes have regional geographical distributions. FAME repeat expansions are dynamic in nature, changing in length and structure within germline and somatic tissues. This variation poses challenges for molecular diagnosis such that molecular methods used to identify FAME repeat expansions typically require a trade-off between cost and efficiency. A rigorous evaluation of the sensitivity and specificity of each molecular approach remains to be performed. The origin of FAME repeat expansions and the genetic and environmental factors that modulate repeat variability are not well defined. Longer repeats and particular arrangements of the TTTTA and TTTCA motifs within an expansion are correlated with earlier onset and increased severity of disease. Other factors such as maternal or paternal inheritance, parental age, and repeat length alone have been suggested to influence repeat variation; however, further research is required to confirm this. The history of FAME genetics to the present is a chronicle of perseverance and predominantly collaborative efforts that yielded a successful outcome. The discovery of FAME repeats will spark progress toward a deeper understanding of the molecular pathogenesis of FAME, discovery of new loci, and development of cell and animal models.


Epilepsies, Myoclonic , Humans , Epilepsies, Myoclonic/genetics , Epilepsies, Myoclonic/pathology , Pedigree , Research
14.
Epilepsy Res ; 191: 107112, 2023 03.
Article En | MEDLINE | ID: mdl-36870093

INTRODUCTION: Protocadherin-19 (PCDH19)-clustering epilepsy is a distinct developmental and epileptic encephalopathy characterized by early-onset seizures that are often treatment refractory. Caused by a mutation of the PCDH19 gene on the X chromosome, this rare epilepsy syndrome primarily affects females with seizure onset commonly in the first year of life. A global, randomized, double-blind, placebo-controlled, phase 2 trial was conducted to evaluate the efficacy, safety, and tolerability of ganaxolone compared with placebo as adjunctive therapy to a standard antiseizure medication regimen in patients with PCDH19-clustering epilepsy (VIOLET; NCT03865732). METHODS: Females aged 1-17 years with a molecularly confirmed pathogenic or likely pathogenic PCDH19 variant who were experiencing ≥12 seizures during a 12-week screening period were stratified by baseline allopregnanolone sulfate (Allo-S) levels (low: ≤2.5 ng/mL; high: >2.5 ng/mL) at screening and randomized 1:1 within each strata to receive ganaxolone (maximum daily dose of 63 mg/kg/day if ≤28 kg or 1800 mg/day if >28 kg) or matching placebo in addition to their standard antiseizure treatment for the 17-week double-blind phase. The primary efficacy endpoint was the median percentage change in 28-day seizure frequency from baseline to the 17-week double-blind phase. Treatment-emergent adverse events (TEAEs) were tabulated by overall, system organ class, and preferred term. RESULTS: Of the 29 patients screened, 21 (median age, 7.0 years; IQR, 5.0-10.0 years) were randomized to receive either ganaxolone (n = 10) or placebo (n = 11). After the 17-week double-blind phase, the median (IQR) percentage change in 28-day seizure frequency from baseline was - 61.5% (-95.9% to -33.4%) among patients in the ganaxolone group and - 24.0% (-88.2% to -4.9%) among patients in the placebo group (Wilcoxon rank-sum test, p = 0.17). TEAEs were reported by 7 of 10 (70.0%) patients in the ganaxolone group and 11 of 11 (100%) patients in the placebo group. Somnolence was the most common TEAE (40.0% ganaxolone vs 27.3% placebo); serious TEAEs were more common in the placebo group (10.0% ganaxolone vs 45.5% placebo); and 1 (10.0%) patient in the ganaxolone group discontinued the study versus none in the placebo group. CONCLUSIONS: Ganaxolone was generally well tolerated and led to a greater reduction in the frequency of PCDH19-clustering seizures compared to placebo; however, the trend did not reach statistical significance. Novel trial designs are likely needed to evaluate the effectiveness of antiseizure treatments for PCDH19-clustering epilepsy.


Anticonvulsants , Epilepsy, Generalized , Female , Humans , Child , Anticonvulsants/therapeutic use , Pregnanolone/therapeutic use , Treatment Outcome , Seizures/drug therapy , Epilepsy, Generalized/drug therapy , Cluster Analysis , Protocadherins
15.
Am J Hum Genet ; 110(3): 419-426, 2023 03 02.
Article En | MEDLINE | ID: mdl-36868206

Australian Genomics is a national collaborative partnership of more than 100 organizations piloting a whole-of-system approach to integrating genomics into healthcare, based on federation principles. In the first five years of operation, Australian Genomics has evaluated the outcomes of genomic testing in more than 5,200 individuals across 19 rare disease and cancer flagship studies. Comprehensive analyses of the health economic, policy, ethical, legal, implementation and workforce implications of incorporating genomics in the Australian context have informed evidence-based change in policy and practice, resulting in national government funding and equity of access for a range of genomic tests. Simultaneously, Australian Genomics has built national skills, infrastructure, policy, and data resources to enable effective data sharing to drive discovery research and support improvements in clinical genomic delivery.


Genomics , Health Policy , Humans , Australia , Rare Diseases , Delivery of Health Care
16.
Life Sci Alliance ; 6(4)2023 04.
Article En | MEDLINE | ID: mdl-36720500

FTSJ1 is a conserved human 2'-O-methyltransferase (Nm-MTase) that modifies several tRNAs at position 32 and the wobble position 34 in the anticodon loop. Its loss of function has been linked to X-linked intellectual disability (XLID), and more recently to cancers. However, the molecular mechanisms underlying these pathologies are currently unclear. Here, we report a novel FTSJ1 pathogenic variant from an X-linked intellectual disability patient. Using blood cells derived from this patient and other affected individuals carrying FTSJ1 mutations, we performed an unbiased and comprehensive RiboMethSeq analysis to map the ribose methylation on all human tRNAs and identify novel targets. In addition, we performed a transcriptome analysis in these cells and found that several genes previously associated with intellectual disability and cancers were deregulated. We also found changes in the miRNA population that suggest potential cross-regulation of some miRNAs with these key mRNA targets. Finally, we show that differentiation of FTSJ1-depleted human neural progenitor cells into neurons displays long and thin spine neurites compared with control cells. These defects are also observed in Drosophila and are associated with long-term memory deficits. Altogether, our study adds insight into FTSJ1 pathologies in humans and flies by the identification of novel FTSJ1 targets and the defect in neuron morphology.


Intellectual Disability , Ribose , Humans , Methylation , Intellectual Disability/genetics , Methyltransferases/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , Neurons/metabolism , Nuclear Proteins/genetics
17.
Nat Commun ; 13(1): 6570, 2022 11 02.
Article En | MEDLINE | ID: mdl-36323681

Disease gene discovery on chromosome (chr) X is challenging owing to its unique modes of inheritance. We undertook a systematic analysis of human chrX genes. We observe a higher proportion of disorder-associated genes and an enrichment of genes involved in cognition, language, and seizures on chrX compared to autosomes. We analyze gene constraints, exon and promoter conservation, expression, and paralogues, and report 127 genes sharing one or more attributes with known chrX disorder genes. Using machine learning classifiers trained to distinguish disease-associated from dispensable genes, we classify 247 genes, including 115 of the 127, as having high probability of being disease-associated. We provide evidence of an excess of variants in predicted genes in existing databases. Finally, we report damaging variants in CDK16 and TRPC5 in patients with intellectual disability or autism spectrum disorders. This study predicts large-scale gene-disease associations that could be used for prioritization of X-linked pathogenic variants.


Autism Spectrum Disorder , Intellectual Disability , Humans , Chromosomes, Human, X/genetics , Genes, X-Linked , Intellectual Disability/genetics , Autism Spectrum Disorder/genetics , Databases, Genetic
18.
STAR Protoc ; 3(4): 101693, 2022 12 16.
Article En | MEDLINE | ID: mdl-36121748

Immunoprecipitation (IP) of endogenously expressed proteins is one of the most biologically relevant techniques to identify protein-protein interactions. We describe an adaptable IP protocol reliant on a specific antibody to the target protein. We detail a quantitative proteomics workflow for the unbiased identification of co-immunoprecipitating proteins, known collectively as an interactome. This includes protocols for the tryptic digestion, Tandem Mass Tag labeling and fractionation of peptides, and their identification and quantification using liquid chromatography-mass spectrometry including computational and statistical analysis. For complete details on the use and execution of this protocol, please refer to Johnson et al. (2020).


Proteins , Proteomics , Proteomics/methods , Mass Spectrometry/methods , Cell Line , Immunoprecipitation
19.
Nat Commun ; 13(1): 4112, 2022 07 15.
Article En | MEDLINE | ID: mdl-35840571

SLITRK2 is a single-pass transmembrane protein expressed at postsynaptic neurons that regulates neurite outgrowth and excitatory synapse maintenance. In the present study, we report on rare variants (one nonsense and six missense variants) in SLITRK2 on the X chromosome identified by exome sequencing in individuals with neurodevelopmental disorders. Functional studies showed that some variants displayed impaired membrane transport and impaired excitatory synapse-promoting effects. Strikingly, these variations abolished the ability of SLITRK2 wild-type to reduce the levels of the receptor tyrosine kinase TrkB in neurons. Moreover, Slitrk2 conditional knockout mice exhibited impaired long-term memory and abnormal gait, recapitulating a subset of clinical features of patients with SLITRK2 variants. Furthermore, impaired excitatory synapse maintenance induced by hippocampal CA1-specific cKO of Slitrk2 caused abnormalities in spatial reference memory. Collectively, these data suggest that SLITRK2 is involved in X-linked neurodevelopmental disorders that are caused by perturbation of diverse facets of SLITRK2 function.


Neurodevelopmental Disorders , Synapses , Animals , Cognition , Hippocampus/physiology , Mice , Mice, Knockout , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Synapses/metabolism
20.
Biol Psychiatry ; 92(8): 614-625, 2022 10 15.
Article En | MEDLINE | ID: mdl-35662507

Protein ubiquitination is a widespread, multifunctional, posttranslational protein modification, best known for its ability to direct protein degradation via the ubiquitin proteasome system (UPS). Ubiquitination is also reversible, and the human genome encodes over 90 deubiquitinating enzymes (DUBs), many of which appear to target specific subsets of ubiquitinated proteins. This review focuses on the roles of DUBs in neurodevelopmental disorders (NDDs). We present the current genetic evidence connecting 12 DUBs to a range of NDDs and the functional studies implicating at least 19 additional DUBs as candidate NDD genes. We highlight how the study of DUBs in NDDs offers critical insights into the role of protein degradation during brain development. Because one of the major known functions of a DUB is to antagonize the UPS, loss of function of DUB genes has been shown to culminate in loss of abundance of its protein substrates. The identification and study of NDD DUB substrates in the developing brain is revealing that they regulate networks of proteins that themselves are encoded by NDD genes. We describe the new technologies that are enabling the full resolution of DUB protein networks in the developing brain, with the view that this knowledge can direct the development of new therapeutic paradigms. The fact that the abundance of many NDD proteins is regulated by the UPS presents an exciting opportunity to combat NDDs caused by haploinsufficiency, because the loss of abundance of NDD proteins can be potentially rectified by antagonizing their UPS-based degradation.


Neurodevelopmental Disorders , Ubiquitinated Proteins , Deubiquitinating Enzymes/genetics , Humans , Neurodevelopmental Disorders/genetics , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism
...